References

[CT1]

Sacchi Romain and others. When, where and how can the electrification of passenger cars help reduce greenhouse gas emissions? URL: https://www.psi.ch/en/media/57994/download.

[CT2]

Brian Cox and others. Uncertain environmental footprint of current and future battery electric vehicles. Environmental Science and Technology, 52:4989–4995, Apr 2018. URL: https://pubs.acs.org/doi/abs/10.1021/acs.est.8b00261, doi:10.1021/ACS.EST.8B00261.

[CT3]

Cucurachi Stefano and others. Noise footprint from personal land-based mobility. Journal of Industrial Ecology, 23(5):1028–1038, Oct 2019. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/jiec.12837, doi:10.1111/jiec.12837.

[CT4]

Thiel Christian and others. Cost and well-to-wheel implications of the vehicle fleet co2 emission regulation in the european union. Transportation Research Part A: Policy and Practice, 63:25–42, May 2014. doi:10.1016/j.tra.2014.02.018.

[CT5]

Ducker Frontier. Aluminum content in european passenger cars. European Aluminium, pages 13, 2019. URL: https://www.european-aluminium.eu/.

[CT6]

European Commission. Monitoring of co2 emissions from passenger cars – regulation (eu) 2019/631 — european environment agency. 2021. URL: https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-19 (visited on 2021-06-17).

[CT7]

European Environment Agency. Monitoring of co2 emissions from passenger cars - regulation (ec) no 443/2009 - european environment agency 2019. 2019. URL: https://www.eea.europa.eu/data-and-maps/data/co2-cars-emission-16.

[CT8]

Cox Brian and others. Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios. Applied Energy2, 2020.

[CT9]

Christian Bauer and others. Opportunities and challenges for electric mobility: an interdisciplinary assessment of passenger vehicles. Nov 2016. URL: https://www.researchgate.net/publication/311396512%5FOpportunities%5Fand%5Fchallenges%5Ffor%5Felectric%5Fmobility%5Fan%5Finterdisciplinary%5Fassessment%5Fof%5Fpassenger%5Fvehicles.

[CT10]

Odd André Hjelkrem, Petter Arnesen, Torstein Aarseth Bø, and Rebecka Snefuglli Sondell. Estimation of tank-to-wheel efficiency functions based on type approval data. Applied Energy, 276:115463, 2020. URL: https://www.sciencedirect.com/science/article/pii/S0306261920309752, doi:https://doi.org/10.1016/j.apenergy.2020.115463.

[CT11]

missing author in 1134

[CT12]

Veronika Henze. China dominates the lithium-ion battery supply chain, but europe is on the rise. 2020. URL: https://about.bnef.com/blog/china-dominates-the-lithium-ion-battery-supply-chain-but-europe-is-on-the-rise/ (visited on 2021-08-03).

[CT13]

Xinhua. China's catl unveils cell-to-pack battery platform. 2019. URL: http://www.xinhuanet.com/english/2019-09/13/c_138389934.htm (visited on 2021-11-14).

[CT14]

Kane Mark. Byd's new blade battery set to redefine ev safety standards. INSIDEEVs, pages 1–2, 2020. URL: https://insideevs.com/news/427640/byd-shown-blade-battery-factory-chongqing/.

[CT15]

BatteryUniversity. Bu-216: summary table of lithium-based batteries - battery university. 2021. URL: https://batteryuniversity.com/article/bu-216-summary-table-of-lithium-based-batteries (visited on 2021-06-17).

[CT16]

Yang Xiao-Guang and others. Thermally modulated lithium iron phosphate batteries for mass-market electric vehicles. Nature Energy 2021 6:2, 6(2):176–185, Jan 2021. URL: https://www.nature.com/articles/s41560-020-00757-7, doi:10.1038/s41560-020-00757-7.

[CT17]

Göhlich Dietmar and others. Design of urban electric bus systems. Design Science, 2018. URL: http://creativecommons.org/licenses/by/4.0/, doi:10.1017/dsj.2018.10.

[CT18]

Preger Yuliya and others. Degradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. Journal of The Electrochemical Society, 167(12):120532, Sep 2020. URL: https://iopscience.iop.org/article/10.1149/1945-7111/abae37, doi:10.1149/1945-7111/abae37.

[CT19]

Cox Brian and others. Umweltauswirkungen von fahrzeugen im urbanen kontext schlussbericht. 2020. URL: https://www.infras.ch/media/filer_public/3f/d9/3fd90a17-3874-425e-8a45-91e6a7d2328a/umweltauswirkungen_von_fahrzeugen_im_urbanen_kontext_schlussbericht.pdf.

[CT20]

Michael Schwertner and Ulrich Weidmann. Comparison of well-to-wheel efficiencies for different drivetrain configurations of transit buses. Transportation Research Record, 2539:55–64, 2016. URL: https://doi.org/10.3929/ethz-b-000121450, doi:10.3141/2539-07.

[CT21]

Andrew Simons and Christian Bauer. A life-cycle perspective on automotive fuel cells. Applied Energy, 157:884–896, Nov 2015. doi:10.1016/j.apenergy.2015.02.049.

[CT22]

Leslie Eudy and Matthew Post. Fuel cell buses in u.s. transit fleets: current status 2020. 2020. URL: https://afdc.energy.gov/files/u/publication/fc_bus_status_2020.pdf.

[CT23]

Kurtz Jennifer and others. Fuel cell electric vehicle durability and fuel cell performance. 2018. URL: https://www.nrel.gov/docs/fy19osti/73011.pdf.

[CT24]

Peter Mock. Footprint versus mass: how to best account for weight reduction in the european vehicle co2 regulation. Oct 2017. URL: https://www.theicct.org/sites/default/files/CO2-reduction-technologies_fact-sheet_10102017_vF.pdf.

[CT25]

Brandie M Sebastian and Mark A Thimons. Life cycle greenhouse gas and energy study of automotive lightweighting. 2017. URL: https://shop.steel.org/products/life-cycle-greenhouse-gas-and-energy-study-of-automotive-lightweighting-full-report.

[CT26]

Hottle Troy and others. Critical factors affecting life cycle assessments of material choice for vehicle mass reduction. Transportation research. Part D, Transport and environment, 56:241, Oct 2017. doi:10.1016/J.TRD.2017.08.010.

[CT27]

World Steel Association. Steel in the circular economy a life cycle perspective. Worldsteel Asscociation, pages 16, 2015. URL: https://worldsteel.org/en/dam/jcr:00892d89%2D551e%2D42d9%2Dae68%2Dabdbd3b507a1/Steel%2Bin%2Bthe%2Bcircular%2Beconomy%2B%2D%2BA%2Blife%2Bcycle%2Bperspective.pdf.

[CT28]

Plötz Patrick and others. Real-world usage of plug-in hybrid electric vehicles fuel consumption, electric driving, and co 2 emissions. 2020. URL: https://theicct.org/publication/real-world-usage-of-plug-in-hybrid-electric-vehicles-fuel-consumption-electric-driving-and-co2-emissions/.

[CT29]

Michael Spielmann and R W Scholz. Life cycle inventories of transport services. The International Journal of Life Cycle Assessment, 10(1):85–94, 2005. URL: http://www.ecoinvent.org/.

[CT30]

Notter Benedikt and others. Handbook emission factors for road transport 4.1 quick reference. 2019. URL: https://www.hbefa.net/e/index.html.

[CT31]

Swiss Federal Office for the Environment. Switzerland's national inventory report 2021. 2021. URL: https://unfccc.int/documents/271462.

[CT32]

Joshua Miller and Lingzhi Jin. Global progress toward soot-free diesel vehicles in 2019 - international council on clean transportation. Sep 2019. URL: https://theicct.org/publication/global-progress-toward-soot-free-diesel-vehicles-in-2019/.

[CT34]

European Environment Agency. Air pollutant emission inventory guidebook 2019. 2019. URL: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-b-i/view (visited on 2020-11-02).

[CT35]

David C.S. Beddows and Roy M. Harrison. Pm10 and pm2.5 emission factors for non-exhaust particles from road vehicles: dependence upon vehicle mass and implications for battery electric vehicles. Atmospheric Environment, 244:117886, Jan 2021. doi:10.1016/J.ATMOSENV.2020.117886.

[CT36]

US EPA. Emission factor documentation for ap-42, section 13.2.1: paved roads. measurement policy group, office of air quality planning and standards. 2011. URL: https://www.epa.gov/sites/default/files/2020-10/documents/emission_factor_documentation_for_ap-42_section_13.2.1_paved_roads_.pdf.

[CT37]

Stolz P. and others. Life cycle inventories of road and non-road transport services. 2016. URL: https://treeze.ch/fileadmin/user_upload/downloads/Publications/Case_Studies/Mobility/544-LCI-Rail-Transport-Services-v2.0.pdf.

[CT38]

Stylianos Kephalopoulos and others. Common noise assessment methods in europe (cnossos-eu). 2012. URL: http://europa.eu/.

[CT39]

Marie Agnès Pallas and others. Towards a model for electric vehicle noise emission in the european prediction method cnossos-eu. Applied Acoustics, 113:89–101, Dec 2016. URL: https://doi.org/10.1016/j.apacoust.2016.06.012, doi:10.1016/J.APACOUST.2016.06.012.

[CT40]

ENTSO-E. Ten-year network development plan (tyndp) 2020 - european network of transmission system operators for electricity. Nov 2020. URL: https://eepublicdownloads.blob.core.windows.net/public-cdn-container/tyndp-documents/TYNDP2020/Foropinion/TYNDP2020_Main_Report.pdf.

[CT41]

Romain Sacchi and others. Prospective environmental impact assement (premise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renewable and Sustainable Energy Reviews, 160:112311, May 2022. URL: https://www.sciencedirect.com/science/article/pii/S136403212200226X, doi:10.1016/J.RSER.2022.112311.

[CT42]

Francesco Cozzolino. Life cycle assessment of biofuels in eu/ch. Dec 2018. URL: https://www.psi.ch/sites/default/files/2019-09/Cozzolino_377125_%20Research%20Project%20Report.pdf.

[CT43]

Christoph Hank and others. Comparative well-to-wheel life cycle assessment of ome3–5 synfuel production via the power-to-liquid pathway. Sustainable Energy & Fuels, 3:3219–3233, Oct 2019. URL: https://pubs.rsc.org/en/content/articlehtml/2019/se/c9se00658c, doi:10.1039/C9SE00658C.

[CT44]

Coen Van Der Giesen and others. Energy and climate impacts of producing synthetic hydrocarbon fuels from co2. Environmental Science and Technology, 48:7111–7121, Jun 2014. URL: https://pubs.acs.org/doi/abs/10.1021/es500191g, doi:10.1021/ES500191G.

[CT45]

Xiaojin Zhang and others. Life cycle assessment of power-to-gas with biogas as the carbon source. Sustainable Energy & Fuels, 4:1427–1436, Mar 2020. URL: https://pubs.rsc.org/en/content/articlehtml/2020/se/c9se00986h, doi:10.1039/C9SE00986H.

[CT46]

Cristina Antonini and others. Hydrogen from wood gasification with ccs - a technoenvironmental analysis of production and use as transport fuel. ChemRxiv - Cambridge University Press, Nov 2020. URL: https://chemrxiv.org/engage/chemrxiv/article-details/60c751ff567dfe7891ec5b7c, doi:10.26434/CHEMRXIV.13213553.V1.

[CT47]

Cristina Antonini and others. Hydrogen production from natural gas and biomethane with carbon capture and storage – a techno-environmental analysis. Sustainable Energy & Fuels, 4:2967–2986, Jun 2020. URL: https://pubs.rsc.org/en/content/articlehtml/2020/se/d0se00222d, doi:10.1039/D0SE00222D.

[CT48]

Bauer Christian and others. Electricity storage and hydrogen: technologies, costs and environmental burdens. 2021.

[CT49]

Zhang Xiaojin and others. Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications. Applied Energy, 190:326–338, Mar 2017. URL: https://doi.org/10.1016/j.apenergy.2016.12.098.

[CT50]

Dai Qiang and others. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries, 5(2):48, Jun 2019. URL: https://mdpi.com/journal/batteries, doi:10.3390/batteries5020048.

[CT51]

Wernet Gregor and others. The ecoinvent database version 3 (part i): overview and methodology. International Journal of Life Cycle Assessment, 21(9):1218–1230, Sep 2016. URL: https://link.springer.com/article/10.1007/s11367-016-1087-8, doi:10.1007/s11367-016-1087-8.

[CT52]

Whiteside James and Finn-Foley Dan. Supply chain looms as serious threat to batteries' green reputation. Nov 2019. URL: https://www.greentechmedia.com/articles/read/graphite-the-biggest-threat-to-batteries-green-reputation.

[CT53]

Philipp Engels, Felipe Cerdas, and others. Life cycle assessment of natural graphite production for lithium-ion battery anodes based on industrial primary data. Journal of Cleaner Production, 336:130474, Feb 2022. URL: https://doi.org/10.1016/J.JCLEPRO.2022.130474, doi:10.1016/J.JCLEPRO.2022.130474.

[CT54]

Benitez Alicia and others. Ecological assessment of fuel cell electric vehicles with special focus on type iv carbon fiber hydrogen tank. Journal of Cleaner Production, 278:123277, Jan 2021. doi:10.1016/j.jclepro.2020.123277.

[CT55]

Sara Evangelisti and others. Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles. Journal of Cleaner Production, 142:4339–4355, Jan 2017. URL: https://doi.org/10.1016/j.jclepro.2016.11.159, doi:10.1016/J.JCLEPRO.2016.11.159.

[CT56]

ABB. Pantograph up - the reliable and fast charging overnight and on route charger. 2019. URL: https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4055&LanguageCode=en&DocumentPartId=&Action=Launch (visited on 2021-06-18).

[CT57]

Albrecht Uwe and others. Kraftstoffstdie. 2013.

[CT58]

ASTRA. Bundesamt für strassen (astra). 2021. URL: https://www.astra.admin.ch/astra/de/home.html (visited on 2021-07-06).

[CT59]

BAFU. Mobitool-faktoren v2.1 - mobitool. 2020. URL: https://www.mobitool.ch/de/tools/mobitool-faktoren-v2-1-25.html (visited on 2021-06-18).

[CT60]

Bundesamt für Umwelt BAFU. Faktenblatt co2-emissionsfaktoren des treibhausgasinventars der schweiz. faktenblatt. Jan 2022. URL: https://www.bafu.admin.ch/dam/bafu/de/dokumente/klima/fachinfo%2Ddaten/CO2%5FEmissionsfaktoren%5FTHG%5FInventar.pdf.download.pdf/Faktenblatt%5FCO2%2DEmissionsfaktoren%5F01%2D2022%5FDE.pdff.

[CT61]

Candelaresi Daniele and others. Comparative life cycle assessment of hydrogen-fuelled passenger cars. International Journal of Hydrogen Energy, Feb 2021. doi:10.1016/J.IJHYDENE.2021.01.034.

[CT62]

Petr Chlebis and others. Comparison of standard and fast charging methods for electric vehicles. Advances in Electrical and Electronic Engineering, 12:111–116, 2014. doi:10.15598/AEEE.V12I2.975.

[CT63]

Brian L. Cox and Christopher L. Mutel. The environmental and cost performance of current and future motorcycles. Applied Energy, 212:1013–1024, Feb 2018. doi:10.1016/J.APENERGY.2017.12.100.

[CT64]

Daimler Trucks. Daimler trucks north america. URL: https://northamerica.daimlertruck.com/.

[CT65]

Del Duce Andrea and others. Electric passenger car transport and passenger car life cycle inventories in ecoinvent version 3. International Journal of Life Cycle Assessment, 21(9):1314–1326, Sep 2016. URL: https://link.springer.com/article/10.1007/s11367-014-0792-4, doi:10.1007/s11367-014-0792-4.

[CT66]

Dornoff Jan and others. On the way to "real world" co2 values: the european passenger car market in its first year after introducing the wltp. May 2020. URL: https://theicct.org/publication/on-the-way-to-real-world-co2-values-the-european-passenger-car-market-in-its-first-year-after-introducing-the-wltp/.

[CT67]

Enerdata. Change in distance travelled by car | odyssee-mure. 2018. URL: https://www.odyssee-mure.eu/publications/efficiency-by-sector/transport/distance-travelled-by-car.html (visited on 2021-07-22).

[CT68]

Eudy Leslie and others. American fuel cell bus project evaluation : third report. 2011. URL: https://www.nrel.gov/docs/fy17osti/67209.pdf.

[CT69]

European Commission. Vehicle energy consumption calculation tool - vecto. 2018. URL: https://ec.europa.eu/clima/policies/transport/vehicles/vecto_en (visited on 2020-09-15).

[CT70]

European Commission. Eur-lex - 32019r1242 - en - eur-lex. 2020. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32019R1242 (visited on 2021-11-17).

[CT71]

European Commission. The European Green Deal. COMMUNICATION FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE EUROPEAN COUNCIL, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. Brussels, 2019.

[CT72]

Eurostat. Electricity production, consumption and market overview - statistics explained. 2017. URL: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_production,_consumption_and_market_overview.

[CT73]

Federal Statistical Office. Transport infrastructure and vehicles. URL: https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/transport-infrastructure-vehicles.html (visited on 2021-07-06).

[CT75]

Frischknecht Rolf and others. Overview and methodology data v2.0 (2007). 2007. URL: https://ecoinvent.org/wp-content/uploads/2020/08/200712_frischknecht_jungbluth_overview_methodology_ecoinvent2.pdf.

[CT76]

FSO and ARE. Mobility and transport microcensus (mtmc). 2017. URL: https://www.are.admin.ch/are/en/home/mobility/data/mtmc.html.

[CT77]

Umberto Guida and Aida Abdulah. Zeeus ebus report #2 - an updated overview of electric buses in europe. 2017. URL: https://zeeus.eu/uploads/publications/documents/zeeus-ebus-report-2.pdf.

[CT78]

Guo Shuman and others. Effect of adding biodiesel to diesel on the physical and chemical properties and engine performance of fuel blends. Journal of Biobased Materials and Bioenergy, 10(1):34–43, feb 2016. doi:10.1166/JBMB.2016.1566.

[CT79]

Vivienne Halleux. New eu regulatory framework for batteries - setting sustainability requirements. 2021. URL: https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689337/EPRS_BRI%282021%29689337_EN.pdf.

[CT80]

Hill Nikolas and others. Light weighting as a means of improving heavy duty vehicles' energy efficiency and overall co2 emissions. 2015. URL: https://climate.ec.europa.eu/system/files/2017-03/hdv_lightweighting_en.pdf.

[CT81]

Hua Thanh and others. Technical assessment of compressed hydrogen storage tank systems for automotive applications. 2010. URL: https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/compressedtank_storage.pdf.

[CT82]

ICCT. A global comparison of the life-cycle greenhouse gas emissions of combustion engine and electric passenger cars. 2021. URL: https://theicct.org/publications/global-LCA-passenger-cars-jul2021.

[CT83]

Infras; Prognos; TEP Energy;. Analyse des schweizerischen energieverbrauchs 2000 - 2014 nach verwendungszwecken. 2015. URL: https://pubdb.bfe.admin.ch/de/publication/download/10260.

[CT84]

Lc-inventories. Uvek-Ökobilanzdatenbestand 2018. 2018. URL: http://www.lc-inventories.ch/.

[CT85]

Marianne Leuenberger and Rolf Frischknecht. Life cycle assessment of two wheel vehicles. 2010. URL: http://esu-services.ch/fileadmin/download/leuenberger-2010-TwoWheelVehicles.pdf.

[CT86]

Meszler Dan and others. European heavy-duty vehicles: cost-effectiveness of fuel-efficiency technologies for long-haul tractor-trailers in the 2025-2030 timeframe. Jan 2018. URL: https://theicct.org/publication/eu-hdvs-cost-effectiveness-of-fuel-efficiency-technologies-for-long%E2%80%91haul-tractor%E2%80%91trailers-in-the-2025%E2%80%912030-timeframe/.

[CT87]

Miotti Marco and others. Integrated environmental and economic assessment of current and future fuel cell vehicles. International Journal of Life Cycle Assessment, 22(1):94–110, Jan 2017. URL: https://link.springer.com/article/10.1007/s11367-015-0986-4, doi:10.1007/s11367-015-0986-4.

[CT88]

Uwe Tietge. From laboratory to road international: a comparison of official and real-world fuel consumption and co2 values for passenger cars in europe, the united states, china, and japan - international council on clean transportation. Nov 2017. URL: https://theicct.org/publication/from-laboratory-to-road-international-a-comparison-of-official-and-real-world-fuel-consumption-and-co2-values-for-passenger-cars-in-europe-the-united-states-china-and-japan/.

[CT89]

Gardiner Monterey. Doe hydrogen and fuel cells program record 9013: energy requirements for hydrogen gas compression and liquefaction as related to vehicle storage needs. 2009. URL: https://www.hydrogen.energy.gov/pdfs/9013_energy_requirements_for_hydrogen_gas_compression.pdf.

[CT90]

Muhaji and D. H. Sutjahjo. The characteristics of bioethanol fuel made of vegetable raw materials. IOP Conference Series: Materials Science and Engineering, 2018. doi:10.1088/1757-899X/296/1/012019.

[CT91]

Nansai Keisuke and others. Life-cycle analysis of charging infrastructure for electric vehicles. Applied Energy, 70(3):251–265, Nov 2001. doi:10.1016/S0306-2619(01)00032-0.

[CT92]

Navidi Thomas and others. Analysis of wireless and catenary power transfer systems for electric vehicle range extension on rural highways. In 2016 IEEE Power and Energy Conference at Illinois, PECI 2016. 2016. doi:10.1109/PECI.2016.7459224.

[CT93]

Office of Energy Efficiency and Renewable Energy. Battery500: progress update. 2020. URL: https://www.energy.gov/eere/articles/battery500-progress-update (visited on 2022-03-10).

[CT94]

Papadimitriou G. and others. Traccs : transport data collection supporting the quantitative analysis of measures relating to transport and climate change. 2013. URL: http://traccs.emisia.com.

[CT95]

Plötz Patrick and others. Real-world usage of plug-in hybrid vehicles in europe: a 2022 update on fuel consumption, electric driving, and co2 emissions. 2022. URL: https://theicct.org/publication/real-world-phev-use-jun22/.

[CT96]

A. G. Prognos, Tep Energy Gmbh, and Infras AG. Energieperspektiven 2050+. 2021. URL: https://www.bfe.admin.ch/bfe/en/home/policy/energy-perspectives-2050-plus.html.

[CT97]

Qiao Yu and others. A 500 wh/kg lithium-metal cell based on anionic redox. Joule, 4(7):1445–1458, Jul 2020. doi:10.1016/J.JOULE.2020.05.012.

[CT98]

QTWW. Hydrogen – cng tanks & cylinders | cng fuel systems | virtual pipeline. 2021. URL: https://www.qtww.com/product/q-lite-lightest-cng-tanks/ (visited on 2021-07-22).

[CT99]

Quantum. Hydrogen cylinder general specifications. 2019. URL: http://www.qtww.com/wp-content/uploads/2019/06/H2-Tank-Specifications-June-2019-All-Tanks-1.pdf (visited on 2021-07-22).

[CT100]

Pierre-Louis Ragon and Felipe Rodríguez. Co 2 emissions from trucks in the eu: an analysis of the heavy-duty co 2 standards baseline data. 2021. URL: https://theicct.org/publication/co2-emissions-from-trucks-in-the-eu-an-analysis-of-the-heavy-duty-co2-standards-baseline-data/.

[CT101]

Andreas Randacher and others. How to build and operate an efficient trolleybus system. 2015. URL: http://www.rupprecht-consult.eu/uploads/tx_rupprecht/FINAL_UITP_brochure_trolleybus_DIGITAL_mail.pdf.

[CT102]

Michail Rantik. Life cycle assessment of five batteries for electric vehicles under different charging regimes. 1999. URL: http://seeds4green.net/sites/default/files/acv%20batterie%20vehicule%20electrique.pdf.

[CT103]

Reuters Staff. Japan may ban sale of new gasoline-powered vehicles in mid-2030s: media. Reuters., 2020. URL: https://uk.reuters.com/article/us-japan-autos-gasoline/japan-may-ban-sale-of-new-gasoline-powered-vehicles-in-mid-2030s-media-idUKKBN28D044.

[CT104]

Rottoli Marianna and others. Coupling a detailed transport model to the integrated assessment model remind. Environmental Modeling and Assessment, 1:3, Mar 2021. URL: https://doi.org/10.1007/s10666-021-09760-y, doi:10.1007/s10666-021-09760-y.

[CT105]

Sacchi Romain and others. Does size matter? the influence of size, load factor, range autonomy, and application type on the life cycle assessment of current and future medium? the heavy-duty vehicles. Environmental Science and Technology, 2021. URL: https://pubs.acs.org/doi/full/10.1021/acs.est.0c07773, doi:10.1021/acs.est.0c07773.

[CT106]

Romain Sacchi and Christian Bauer. Life-cycle inventories for on-road vehicles. 2021. URL: https://zenodo.org/record/5720779.

[CT107]

Romain Sacchi. Romainsacchi/carculator_bus: life cycle assessment of buses and coaches. 2021. URL: https://github.com/romainsacchi/carculator_bus (visited on 2021-06-17).

[CT109]

J T Schoemaker. Research on the weight of buses and touring coaches final report. International Road Transport Union, 2007.

[CT110]

Jesko Schulte and Henrik Ny. Electric road systems: strategic stepping stone on the way towards sustainable freight transport? Sustainability (Switzerland), 10(4):1148, Apr 2018. URL: https://mdpi.com/journal/sustainability, doi:10.3390/su10041148.

[CT111]

ScienceDaily. Development of a lithium-air battery with an energy density over 500 wh/kg: one of the world's highest energy densities achieved – sciencedaily. 2022. URL: https://www.sciencedaily.com/releases/2022/01/220120140724.htm (visited on 2022-03-10).

[CT112]

SFO. Parc de motocycles par caractéristiques techniques, depuis 1990 - 1990-2020 | tableau | office fédéral de la statistique. 2021. URL: https://www.bfs.admin.ch/asset/fr/px-x-1103020100_163 (visited on 2021-06-17).

[CT113]

SFO. Passenger transport performance | federal statistical office. 2021. URL: https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/passenger-transport/performance.html (visited on 2021-06-17).

[CT114]

SFO. Goods transport | federal statistical office. 2021. URL: https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-transport/goods-transport.html (visited on 2021-06-17).

[CT115]

SFO. Bestand der sachentransportfahrzeuge nach kanton, fahrzeugart, karosserie, fahrzeugklasse nach eu, zulässiges gesamtgewicht, treibstoff, antrieb und jahr. pxweb. 2021. URL: https://www.pxweb.bfs.admin.ch/pxweb/de/px-x-1103020100_133/px-x-1103020100_133/px-x-1103020100_133.px (visited on 2021-07-20).

[CT116]

SFO. Leistungen nach fahrzeugart und gesamtgewicht (gewerblicher verkehr und werkverkehr). inländische schwere fahrzeuge - 2019 | tableau | office fédéral de la statistique. 2021. URL: https://www.bfs.admin.ch/bfs/fr/home/services/pour-medias.assetdetail.14467910.html (visited on 2021-07-20).

[CT117]

SFO. Parc de voitures de tourisme par caractéristiques techniques, depuis 2005 - 2005-2020 | tableau | office fédéral de la statistique. 2021. URL: https://www.bfs.admin.ch/bfs/fr/home/statistiques/mobilite-transports/infrastructures-transport-vehicules/vehicules/vehicules-routiers-parc-taux-motorisation.assetdetail.15724843.html (visited on 2021-06-17).

[CT118]

Speirs Jamie and others. Natural gas fuel and greenhouse gas emissions in trucks and ships. Progress in Energy, 2(1):012002, Jan 2020. URL: https://doi.org/10.1088/2516-1083/ab56af, doi:10.1088/2516-1083/ab56af.

[CT119]

Spritmonitor.de. Spritverbrauch berechnen und autokosten verwalten - spritmonitor.de. 2021. URL: https://www.spritmonitor.de/ (visited on 2021-06-17).

[CT120]

Suh In Soo and others. Design and experimental analysis of an efficient hvac (heating, ventilation, air-conditioning) system on an electric bus with dynamic on-road wireless charging. Energy, 81:262–273, Mar 2015. doi:10.1016/j.energy.2014.12.038.

[CT121]

Shunsuke Tabeta. China plans to phase out conventional gas-burning cars by 2035. Nikkei Asia, 2020. URL: https://asia.nikkei.com/Business/Automobiles/China-plans-to-phase-out-conventional-gas-burning-cars-by-2035.

[CT122]

Terlouw Tom and others. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environmental Science and Technology, 55:16, 2021. URL: https://doi.org/10.1021/acs.est.1c03263.

[CT123]

Transport & Environment. How clean are electric cars? Apr 2020. URL: https://www.transportenvironment.org/wp-content/uploads/2020/04/TEs-EV-life-cycle-analysis-LCA.pdf.

[CT124]

Transport Environment. From dirty oil to clean batteries. 2021. URL: https://www.transportenvironment.org/wp-content/uploads/2021/07/2021_02_Battery_raw_materials_report_final.pdf.

[CT125]

US Department of Energy. Hydrogen storage tech team roadmap. 2017. URL: https://www.energy.gov/sites/prod/files/2017/08/f36/hstt_roadmap_July2017.pdf.

[CT126]

Vepsäläinen Jari and others. Computationally efficient model for energy demand prediction of electric city bus in varying operating conditions. Energy, 169:433–443, Feb 2019. doi:10.1016/j.energy.2018.12.064.

[CT127]

Group Volkswagen. Environmental footprint at the vw group. 2021. URL: https://www.volkswagenag.com/en/news/stories/2019/04/from-the-well-to-the-wheel.html (visited on 2022-04-05).

[CT128]

Elisabeth Weymar and Matthias Finkbeiner. Statistical analysis of empirical lifetime mileage data for automotive lca. International Journal of Life Cycle Assessment, 21(2):215–223, Feb 2016. URL: https://link.springer.com/article/10.1007/s11367-015-1020-6, doi:10.1007/S11367-015-1020-6.

[CT129]

Wolff Sebastian and others. Scalable life-cycle inventory for heavy-duty vehicle production. Sustainability (Switzerland), 2020. doi:10.3390/su12135396.

[CT130]

Wulf Christina and others. Life cycle assessment of hydrogen transport and distribution options. Journal of Cleaner Production, Oct 2018. URL: https://doi.org/10.1016/j.jclepro.2018.07.180.

[CT131]

Maya Xiao. China's electric bus market dominance driving demand for lithium-iron-phosphate batteries |interact analysis. 2019. URL: https://www.interactanalysis.com/chinas-electric-bus-market-dominance-driving-demand-for-lithium-iron-phosphate-batteries/ (visited on 2021-06-18).

[CT132]

Yihao Xie and others. Diesel sulfur content impacts on euro vi soot-free vehicles: considerations for emerging markets - international council on clean transportation. Apr 2020. URL: https://theicct.org/publication/diesel-sulfur-content-impacts-on-euro-vi-soot-free-vehicles-considerations-for-emerging-markets/.

[CT133]

David D. Parrish and others. Air quality improvement in los angeles—perspectives for developing cities. Frontiers of Environmental Science & Engineering 2016 10:5, 10:1–13, Aug 2016. URL: https://link.springer.com/article/10.1007/s11783-016-0859-5, doi:10.1007/S11783-016-0859-5.

[CT134]

QTWW. Hydrogen – cng fuel systems | virtual pipeline. 2021. URL: https://www.qtww.com/product/q-rail-cng-fuel-system/ (visited on 2021-07-22).